

The Evaluation of Eight Commercially Available STR Kits

Abstract:

The National Forensic Science Technology Center (NFSTC) conducted a study to evaluate the performance of eight STR amplification kits: Applied Biosystems' AmpfℓSTR® Profiler Plus® ID kit, Cofiler® kit, Identifiler® kit, MiniFiler™ kit and the Yfiler® kit and Promega's PowerPlex® 16 system, PowerPlex® Y system and the PowerPlex® 55 system.

The performance of a single source serial dilution was assessed with each STR amplification kit based on a defined set of criteria:

- Sensitivity
- Heterozygosity
- Baseline noise
- Reproducible amplification artifacts

Heterozygosity and sensitivity from two person mixture series were compared to results obtained from single source samples.

Introduction:

There are various commercial STR multiplex kits available to the forensic science DNA community that are designed to address the ever-changing needs of crime laboratories. The primary goal of this study is to provide an overview of key performance measures of the eight STR kits tested.

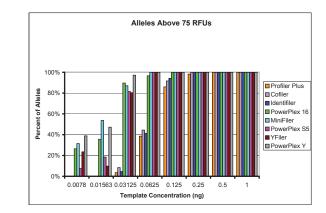
Materials and Method:

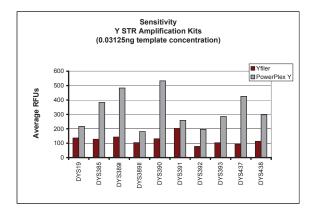
Materials:

- Standards from 2 male donors
- Phenol:chloroform:Isoamyl alcohol (25:24:1)
- TE Buffer, DTT and Proteinase K (10ng/ul)
- Applied Biosystems' Human DNA Quantifiler® Kit
- Applied Biosystems' Ampf/STR[®] Profiler Plus[®] kit, Cofiler[®] kit, Identifiler[®] kit, MiniFiler[™] kit and the Yfiler[®]
- Promega's PowerPlex[®] 16 system, PowerPlex[®] Y system and the PowerPlex[®] S5 system
- Running Buffer, 10X
- 16 capillary array, 36cm
- POP-4[™] polymer for 3130*x*/
- Matrix standards
- Internal Lane Size Standards
- Hi-Di[™] Formamide
- 96-Well GeneAmp[®] PCR System 9700
- 7500 Real-Time PCR System
- 3130x/ Genetic Analyzer

Method:

- Two separate known human male DNA standards were prepared utilizing a standard organic extraction method in conjunction with the Millipore Microcon[®] 100 centrifugal filter device.
- The samples were serially diluted to yield the following target concentrations: 1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, and 0.0078 ng.
- The two standards were systematically combined to create the following mixture ratios: 1:20, 1:15, 1:12, 1:10, 1:8, and 1:5. The targeted concentrations varied per kit and were based on the performance of the dilution series. (Profiler Plus[®], Cofiler[®], Identifiler[®] targeted 1 ng. PowerPlex[®] 16, PowerPlex[®] S5, PowerPlex[®] Y and Yfiler[®] targeted 0.5ng. MiniFiler[™] target was 0.25ng.)
- The samples were quantitated using the Applied Biosystems Quantifiler[®] Human Quantification Kit on an Applied Biosystems 7500 Real-Time PCR System. The results were normalized with NIST quantitation standards.
- Samples were amplified on an Applied Biosystems GeneAmp[®] PCR 9700 thermal cycler following manufacturer's specifications. Applied Biosystems' AmpfℓSTR[®] Profiler Plus[®] kit, Cofiler[®] kit, Identifiler[®] kit, MiniFiler[™] kit,

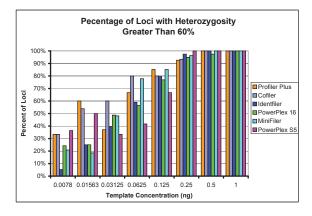

and the Yfiler[®] kit and Promega's PowerPlex[®] 16 system, PowerPlex[®] Y system, and the PowerPlex[®] S5 system.


- The samples were then separated and detected using an Applied Biosystems 3130x/ Genetic Analyzer using manufacture's recommended conditions:
- Applied Biosystems kits: 3kv, 10 sec injections, 8.7 μI Formamide, 0.3 μI GS 500, 1 μI of sample.
- Promega kits: 3kv, 10 sec injections, 9.5 μI Formamide, 0.5 μI ILS 600, 1 μI of sample
- Data was analyzed using GeneMapper® ID Software v3.2.

Results and Discussion:

Sensitivity:

- Concentrations at which alleles fell below 75 RFUs for each kit are depicted in table 1.
- MiniFiler[™] and PowerPlex[®] 16 produced the highest RFUs for each concentration.
- Identifiler[®], Profiler Plus[®], and Cofiler[®] exhibited comparable peak heights to each other for each concentration.
- Profiler Plus[®] displayed an RFU value less than 75 at 0.25 ng concentration at D7S820 in one injection of the triplicate data set.
- Note: Profiler Plus[®] and Cofiler[®] amplifications were performed with manufacture's recommended 50 µl reaction.
- The RFU range was higher for PowerPlex[®] Y than Yfiler[®] at each concentration.


Heterozygosity:

- As sample concentration decreases, the number of loci with heterozygosity greater than 60% also decreases.
- At concentrations of 0.5 ng and below, PowerPlex® 16 did not maintain a minimum heterozygosity of 60% at D8S1179

- 0.5 ng corresponds with an average RFU of 2200

- Note: this occurred once in the triplicate injection

- At concentrations of 0.25 ng and lower, Profiler Plus[®], Cofiler[®], Identifiler[®], MiniFiler[™] did not maintain minimum of 60% heterozygosity.
- 0.25 ng concentration corresponds with the following peak height ranges:
- Profiler Plus[®] 138 to 273 RFUs
- Cofiler® 210 to 350 RFUs
- Identifiler $^{\ensuremath{\text{\tiny B}}}$ 255 to 445 RFUs
- MiniFiler™ 1870 to 3250 RFUs
- At concentrations of 0.125 ng and lower, PowerPlex[®] S5 displays loss of 60% heterozygosity.
- 0.125 ng corresponds with the RFU range 228 to 753

Amplification Artifacts:

- Several dye blobs were present in the MiniFiler™, Yfiler[®], Identifiler[®], PowerPlex[®] 16, PowerPlex[®] Y, Profiler Plus[®] kits.
- Some instances of elevated stutter were observed for Profiler Plus[®], Identifiler[®], PowerPlex[®] 16.
- No elevated stutter was observed with Cofiler[®], MiniFiler[™], PowerPlex[®] S5.
- Indications of plus stutter were observed in several kits and in some instances were greater than 75 RFUs.
- Minus A was observed in several kits, most notably in PowerPlex® S5.

Baseline Noise:

• All amplification kits displayed low background noise with the limit of detection (LOD) ranging from 10 to 15 RFUs.

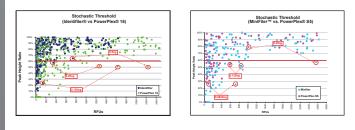
 $LOD = \overline{X}_{blank} + 3\sigma_{blank}$

• The limit of quantitation (LOQ) ranging from 24 to 36 RFUs for all kits.

 $LOQ = \overline{X}_{blank} + 10\sigma_{blank}$

• In general, PowerPlex[®] 16 displayed a higher level of noise than the other kits tested.

Sutherland, Carrie B*, BS1; O'Brien, Robert I, BS1; Figarelli, Debra A, BS1; Ring, Joan G, MS1, and Grates, Kirk M, BA1



Mixtures:

	Profiler Plus®	Cofiler®	Identifiler®	PowerPlex® 16	PowerPlex® S5	MiniFiler™	Yfiler®	PowerPlex® Y
	Percentage of Minor Contributor Alleles Above 75 RFUs							
Mixture ratio								
1:5	100%	100%	100%	100%	100%	100%	100%	83%
1:8	100%	100%	100%	88%	100%	75%	87%	77%
1:10	82%	100%	85%	77%	100%	73%	93%	67%
1:12	59%	92%	74%	79%	94%	73%	87%	56%
1:15	54%	42%	68%	73%	94%	48%	78%	38%
1:20	18%	75%	55%	50%	81%	45%	69%	44%

Conclusions:

- In general, the concentration at which heterozygosity fell below 60% was always higher than the concentration for which peak heights fell below 75 RFUs.
- PowerPlex[®] 16 appeared to be more sensitive than Identifiler[®], Profiler Plus[®] and Cofiler[®], however it displayed stochastic effects at higher RFU values/concentrations when compared to these kits.
- MiniFiler™ appeared to be more sensitive than PowerPlex[®] S5 however it displayed stochastic effects at higher RFU values/concentrations.
- Dropout (where a heterozygote appears as a homozygote) was observed with MiniFiler[™] and PowerPlex[®] 16 with approximate peak heights at 200 and 500 RFUs, respectively.
- Yfiler[®] and PowerPlex[®] Y perform similarly. Each kit had alleles that were below or less than 75 RFUs at 0.03125 ng.
- Laboratories should perform appropriate validation studies in order to establish interpretation guidelines which should include assessment of LOD, LOQ and stochastic threshold for each amplification kit and instrument.
- The mixture series performed as expected when compared to single source samples at comparable concentrations.

References:

Internal Validation of STR Systems Reference Manual. www.promega.com part # GE053, revised 9/06.

The most current user and technical manuals for each kit were referenced in this study. Manuals procured from www.appliedbiosystems.com (published 1998-2006) and www.promega.com/tbs/ (published 2008.)

Study Contact and Author Affiliations:

¹National Forensic Science Technology Center 7881 114th Avenue N Largo, FL 33773 727-549-6067 www.nfstc.org

1st concentration to fall below 60 % heterozygosity