

National Forensic Science Technology Center 7881 114th Avenue North, Largo, FL 33773 Phone (727) 549-6067 Fax (727) 549-6070 www.NFSTC.org

Forensic Technology Testing & Evaluation Report Form

Report Date: April 04, 2008

Project Information

Title: Genebench FX™-100

Evaluation Type: Instrumentation **Manufacturer:** Network Biosystems

Start Date: March 31, 2008 End Date: April 3, 2008

Evaluation Overview

During the demonstration of the Network Biosystems Genebench FXTM-100 microfluidics chip-based system for use in the separation and detection of STR DNA fragments, an evaluation of the portability, ruggedness, ease-of-use, and performance of the instrument was conducted, as well as an assessment of the reproducibility of the data produced by the system.

Evaluation Team

Joan Ring, Kirk Grates, Carrie Sutherland, Robert O'Brien, Karolyn Tontarski, Kathleen Savage

Product Specifications

Brief Description: A portable CE device using glass microfluidic chips to separate DNA fragments, allowing for mobile genetic analysis.

Product Uses: Mobile applications include forensic applications, port authorities, airports, border security, immigration, mass disasters, and military intelligence.

Detection System Dimensions: 54cm x 74cm x 41cm [21.3" x 29.1" x 16.1"]

Weight: 53 kg (117 lbs)

Evaluation

Standards, Controls, and Samples Used in Evaluation

- Dilution series from 5ng to 0.036ng
- Mixture series to include the following major to minor ratios (10:90, 30:70, 50:50, 70:30, 90:10)
- Several NIST samples (NIST 9947A, NIST1, NIST2)
- Dilution series of 9947A prepared by Network Biosystems
- Allelic ladders

Page 1 of 3 © 2008 NFSTC

National Forensic Science Technology Center 7881 114th Avenue North, Largo, FL 33773 Phone (727) 549-6067 Fax (727) 549-6070 www.NFSTC.org

Forensic Technology Testing & Evaluation Report Form

· Amplification blanks

Synopsis of Experiment(s)

Day One

- 1. Instrument unpacked from shipping crates and set up; chips also prepared
- 2. Run #1 with allelic ladder and samples prepared by Network Biosystems
- 3. Run #2 with allelic ladder and complete dilution series and mixture series
- 4. Data Review

Day Two

- 1. Run #3 with allelic ladders and select samples including some from dilution series, some from mixture series, the NIST samples, and some prepared by Network Biosystems
- 2. Run #3b fast run failed due to chip
- 3. Data Review
- 4. Instrument moved to mobile laboratory
- 5. Instrument set up

Day Three

- 1. Presentation
- 2. Run #4 standard run in mobile laboratory same sample set as Run #3
- 3. Run #5 fast run in mobile laboratory same sample set as Run #3
- 4. Data review

Day Four

- 1. Presentation
- 2. Run #6 Matrix standards
- 3. Data Review
- 4. Instrument packed up in shipping crates

Findings

Strengths

- System set up time is less than 1 hour
- · Power supply requirements are standard
- Rugged design of instrument with shock mounts to help protect the optics
- Rugged design of computer

National Forensic Science Technology Center 7881 114th Avenue North, Largo, FL 33773 Phone (727) 549-6067 Fax (727) 549-6070 www.NFSTC.org

Forensic Technology Testing & Evaluation Report Form

- The heating system is enclosed and provides consistent performance generating precise separation from run to run; single base pair resolution close to baseline is achieved
- Baseline resolution
- Dynamic range of 9ng to 0.1ng
- Fast run (17min.) provides similar resolution as standard run (25min.)
- Maintains precision from run to run regardless of instrument location/room conditions due to limited temperature variation during runs (with precision specs = 0.15 bp average), therefore a ladder from previous runs can be used to size data
- Allele calls were concordant with 3130 XL data
- Fast module yields concurrent results (limited data during demonstration) in 17 minutes

Opportunities for Improvement

- It would be beneficial if the currently available glass chips were replaced with easier-to-use, less labor intensive, single-use, plastic disposable chips
- It would be beneficial to miniaturize the entire system, including the computer
- Software applications would benefit from creation of a translation software allowing analysis of data with Applied Biosystems' GeneMapper® ID software and improvement of Genemarker® software applications
- Improvements to matrix/color correction are necessary for multi-component analysis
- Placement of handles on the instrument box would increase ease of transportability

Recommendations

- Generate translation software that allows for integration of data into GeneMapper® ID software
- Modify Genemarker® software to enable stutter filters, improved color correction, minus A filters, and analysis of more samples at a time with less manual data manipulation
- Release instrument "as is", to replace CE for mobile applications
- Make plastic disposable/single use chips available as soon as possible
- Assist in identification of materials and instructions necessary for remote deployment of instrument
- For future technology, strongly recommend working with Applied Biosystems and Promega to allow for optimization of the commercially available kit loci from amplification through separation and detection
- While a fully integrated system will be beneficial for some applications, it may limit some forensic
 applications due to lack of option for sample handling between different steps of the DNA process